miércoles, 8 de mayo de 2013

Métodos de Localización en Distribución en planta


Métodos de Localización en Distribución en planta



Los métodos de localización permiten evaluar alternativas de localización. Hay una variedad de métodos, los cuales miden cualitativamente o cuantitativamente la localidad óptima para la distribución de planta. Así existen muchos métodos para determinar las necesidades de espacio en una Distribución en planta, cada uno tiene su particularidad, pero todos pueden aplicarse en un mismo proyecto. Estos métodos pueden sera apoyos para la toma de decisiones.

Cuanto más simples son estos métodos, menos factores se tendrán en cuenta en el análisis y menos fiables las soluciones obtenidas mediante su uso; sin embargo, proporcionan un análisis más rápido que permite reducir el campo de las posibles soluciones a un grupo mas reducido.









Método de transporte

Es una técnica de aplicación de la programación lineal, un enfoque cuantitativo que tiene como objetivo encontrar los medios menos costosos (óptimos) para embarcar abastos desde varios orígenes (fábricas, almacenes o cualquier otro de los puntos desde donde se embarcan los bienes) hacia varios destinos (cualquiera de los puntos que reciben bienes). En los problemas de localización, este método se puede emplear para el análisis de la mejor ubicación de un nuevo centro, de varios a la vez, y en general, para cualquier reconfiguración de la red.






Para utilizar el método de transportación hay que considerar los siguientes pasos: 

1. Los puntos de origen y la capacidad o abasto por período, para cada uno. 

2. Los puntos de destino y la demanda por período para cada uno. 

3. El costo de embarque por una unidad desde cada origen hacia cada destino. 

El primer paso en el procedimiento de este tipo de problema es establecer una matriz de transportación, la cual tiene como objetivo resumir de manera provechosa y concisa todos los datos relevantes y continuar los cálculos del algoritmo. 

Para crear la matriz de transportación deben seguirse los siguientes pasos: 

1. Crear una fila que corresponda a cada planta (existente o nueva) que se esté considerando y crear una columna para cada almacén. 

2. Agregar una columna para las capacidades de las plantas y una fila para las demandas de los almacenes, e insertar después sus valores numéricos específicos. 

3. Cada celda que no se encuentre en la fila de requisitos ni en la columna de capacidad representa una ruta de embarque desde una planta hasta un almacén. Insertar los costos unitarios en la esquina superior derecha de cada una de esas celdas. 

En muchos problemas reales, a veces sucede que la capacidad excede a los requisitos unidades, se agrega una columna (un almacén ficticio) con una demanda de unidades y los costos de embarque en las nuevas celdas creadas son igual a $0, pues en realidad esos embarques no se realizan, por lo que representan capacidad de planta no utilizada. Igualmente, si los requerimientos exceden a la capacidad por unidades, se agrega una fila más (una planta ficticia) con capacidad de unidades y se asignan costos de embarque iguales a los costos faltantes de las nuevas celdas. Si estos últimos costos no se conocen o su valor es el mismo para todos los almacenes, se le asigna $0 por unidad a los costos de embarque de cada celda de la fila ficticia. La solución óptima no resulta afectada, pues el mismo faltante de unidades se necesita en todos los casos. Para lograr que la suma de todas las capacidades sea igual a la suma de todas las demandas es que se añade una planta ficticia o un almacén ficticio. Algunos paquetes de software los añaden automáticamente cuando el usuario introduce los datos. 

Cuando la matriz inicial está conformada, el objetivo es establecer el patrón de asignación de menor costo que satisfaga todas las demandas y agote todas las capacidades. Este patrón se determina mediante el método de transporte, el cual garantiza que se hallará la solución óptima. La matriz inicial se completa con una solución que cumpla dos condiciones: sea factible y satisfaga las demandas de todos los almacenes y agote las capacidades de todas las plantas. Luego se crea una nueva matriz con una solución nueva, teniendo ésta un costo total más bajo. Este procedimiento iterativo se debe realizar hasta que no sea posible mejorar la solución anterior, cuando esto ocurra la solución óptima se ha encontrado. 

En este método es obligatorio que se cumpla que el número de embarques no iguales a 0 en la solución óptima nunca sea mayor que la suma del número de planta y almacenes menos 1. 

En el caso que se emplee un paquete de software sólo se introducen los datos correspondientes a la primera matriz.




1 comentario: